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Abstraet--A numerical study is made of flow and mass transfer characteristics for a cup-like cylinder, 
which rotales steadily about its own central longitudinal axis. This study simulates the earlier mass transfer 
experiment of Sparrow and Chaboki, which provided only the averaged value of Sherwood number. 
Comprehensive numerical solutions have been obtained for the Navier-Stokes equations over an extended 
range of Reynolds numbers. Numerically-constructed flow visualizations exhibit the structures of three- 
component velocity and concentration fields. The patterns of meridional flows, which are directly respon- 
sible for cenvective transport, are analyzed. The distributions of azimuthal flow are illustrated. Plots of 
the local Sherwood number at the inner surface of the cup are given. Physically plausible descriptions are 
presented ef the local mass transfer characteristics for both cases of a transferring base endwall and a non- 
transferring base endwall. The numerical results of the cavity-average Sherwood number are consistent 

with the previous experimental data. 

'1. I N T R O D U C T I O N  

Fluid flow and transport processes involving a rot- 
ating solid body pose a basic problem in fluid dynam- 
ics research. Convective fluid motions are induced by 
the rotating body, and these fluid flows give rise to 
enhanced transfer coefficients between the surface of  
the body and the fluid. Several geometrically-simple 
body shapes have been considered, and associated 
augmentation of  l:ransport properties has been docu- 
mented [1-7]. In particular, transport phenomena in 
the interior region of  a cup-like cylindrical vessel, 
which rotates about  its central axis, are of  special 
interest. As illustrated in Fig. 1, owing to the cylinder 
rotation, there arise complex fluid motions in the cup 
interior as well ~s in the surroundings of  the cup. 
Because of  thence convective activities, transfer 
coefficients at the inner cylindrical sidewall and at the 
base endwall disk of  the cup are significantly 
increased. Determinat ion of  these transfer coefficients 
is important  in the., design and operation of  a multitude 
of  rotating fluid machinery, such as a chemical mixer, 
centrifuge, etc. 

Sparrow and Chaboki  [8] conducted a pioneering 
experimental investigation of  mass transfer 
coefficients for a rotating cup, as sketched in Fig. 1. 
The actual experimental methodology was the naph- 
thalene sublimation technique, which is known to pos- 
sess higher degrees of  accuracy in assessing transport 
properties. In the experiments, two variants of  bound- 
ary conditions we~:e implemented. In one case, referred 
to as type A, the base endwall disk was equipped such 
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Fig. 1. Problem geometry and computational domain. 

that no mass transfer was permitted at that surface. 
This is equivalent to an adiabatic disk in heat transfer. 
Mass transfer was allowed only at the cylindrical side- 
wall surface, at which the naphthalene concentration 
was kept constant. In the other case, termed type B, 
both the cylindrical surface and the base disk were 
maintained at uniform concentration of  naphthalene. 
This is analogous to the constant-temperature wall 
condit ion in a heat transfer situation. 

Extensive laboratory measurements of  Sparrow and 
Chaboki  [8] presented the overall mass transfer 
coefficients, which were embodied in the average Sher- 
wood number, over ranges of  the rotational Reynolds 

2959 



2960 W.N. KIM and J. M. HYUN 

C 
D 
D 
L 
R 
(n~, z~) 
Re 
Ro 
(r, O, z) 
Sc 
Sh 
Sh 

NOMENCLATURE 

dimensionless concentration 
diffusivity of concentration 
inner diameter of the cylinder, 2R 
height of the cylinder 
inner radius of the cylinder 
computational domain 
Reynolds number, ogR2/v 
outer radius of the cylinder 
cylindrical coordinates 
Schmidt number, v/D 
local Sherwood number 
total averaged Sherwood number 

Shb local Sherwood number on the endwall 
disk 

Shb averaged Shb 
She local Sherwood number on the 

cylindrical sidewall 
Sh~ averaged She 
(u, v, w) velocity components. 

Greek symbols 
v kinematic viscosity 

meridional stream function 
o9 angular velocity of the cylinder. 

number (Re) and of the cylinder aspect ratio (L/D, 
where L and D denote the height and diameter of the 
cylinder, respectively). Utilitizing these data, exper- 
imental correlations were suggested for high Reynolds 
numbers, Re > O(103). These expressed the overall 
Sherwood number in the form : 

Sh = a Re m (L/D) n. (l)  

The empirically-fitted equation (1) was shown to 
reproduce adequately the measurement data for the 
afore-stated two types of boundary conditions. 

In summary, these laboratory measurements of ref. 
[8] provided valuable information on the averaged 
transfer coefficients for a rotating cup-like container. 
It is noted, however, that the convective flow structure 
inside the cup was not examined. In the experiments, 
no flow visualizations were conducted, and measure- 
ments were not given for the field of naphthalene 
concentration. In ref. [8], only the overall coefficient 
of mass transfer for the entire inner surface of cup 
was reported, and the local variance of mass transfer 
was not scrutinized. It is worthy of mention that no 
other published accounts are found in the literature 
which address the fundamental issues of transport 
phenomenon for a rotating vessel such as the one 
treated by Sparrow and Chaboki [8]. 

In this paper, it is proposed to seek comprehensive 
numerical solutions to the governing Navier-Stokes 
equation. The main advantage of numerical 
approaches is that details of flow and concentration 
fields, both at the solid surfaces and in the interior 
region of the cup, can be described. The global struc- 
tures of flow and concentration, in the cup interior 
and in the surroundings close to the cup opening, 
are essential in ascertaining the impact of rotation- 
induced convection on the augmentation of transport 
processes. In the present efforts, numerical solutions 
are procured in the parameter ranges comparable to 
the experimental conditions of Sparrow and Chaboki. 
The numerical results thus obtained are in accord 
with the measurement data of overall mass transfer 
coefficients. These endeavors give credence to the pre- 
sent numerical methods; and, based on these vali- 

dations, numerical computations will be extended to 
encompass broader ranges of Re and L/D than those 
of Sparrow and Chaboki. As stressed earlier, descrip- 
tions will be rendered of three-component flow and of 
concentration fields in the rotating cup. Numerically- 
constructed flow visualizations will be made, and these 
illustrate the convective characteristics of mass trans- 
fer. Systematically-organized computations illumi- 
nate the parametric dependence of transfer properties 
on Re and L/D as well as on the type of boundary 
conditions imposed on the body surfaces. On balance, 
the present paper represents an expanded and 
reinforced numerical model counterpart to the pre- 
ceding experimental program of Sparrow and 
Chaboki. 

2. FORMULATION AND NUMERICAL MODEL 

In reference to the configuration of Fig. 1, the inner 
radius and height of the cup are respectively R and L, 
and o9 denotes the rotation rate of the cup. The flow 
is governed by the Navier-Stokes equations of 
motion. For  a cylindrical coordinate frame (r, 0, z), 
with corresponding velocity components (u, v, w), 
these equations in dimensionless form are written as 

Ou Ou v 2 Op 

u ff-r + W Oz r Or 

1 [3Zu 1 8u 82u u \  

+ T ;  + r Tr + S j  - ? ) 
Ov Ov uv 1 /82v 10v  02v v )  

U Or + W Oz + --r - R e , O r  2 + r ~r + ~z2 - ~ 

(2) 

(3) 

0w 0w 0p 1 [02w 1 0w 02w'~ 
u + w 0z 0z + + + : )  

(4) 

I d(ru) 0w 
r O +N = °  (5) 
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OC OC 1 (O2C 10C gzC'X 
uf f f+W-~z=ReSc\Or:  + r ~ - r  + ~ z 2 ) .  (6) 

In the above, C denotes the dimensionless con- 
centration, and other notations are standard. In the 
nondimensionalization, length is referenced by R, and 
velocity by caR. The dimensionless parameters are Re 
[ =-- caR2/v], the rotating Reynolds number ; Sc [ -  v/D], 
the Schmidt number, in which v is kinematic viscosity 
and D diffusivity of concentration. These physical 
properties are taken to be constant. 

In accordance with the problem statement, the fluid 
far from the cup is at rest and at constant con- 
centration C = 0 Due to the cylinder rotation, fluid 
motions are generated inside and near the cup. The 
associated boundary conditions are 

u = w = O v = l  atr=l,O<~z<~L/R 
u = w = O v = r  at0~<r~< l z = 0 .  (7) 

For  the concentration, in line with the experiments 
of Sparrow and Chaboki, for type A (a non-trans- 
ferring base) : 

and 

C = I  a t r = l , 0 < ~ z < < . L / R  

0C 
d-~-=0 a t 0 ~ < r ~ < l z = 0  (8a) 

and for type B (the cylindrical sidewall and the base 
endwall disk are at constant concentration) 

~at r = l , 0 < < . z < ~ L / R  
C = l [ a t 0 ~ < r ~ < l z = 0 .  

(8b) 

In the experiment of ref. [8], the outer surface of 
the cylindrical sidewall was non-transferring, i.e. 

dC 
u = w = 0  V=Ro - ~ r = 0  

a t r = R o  O<<.z<<.L/R (9) 

where Ro denotes the non-dimensional radius of the 
outer surface of  the solid wall. 

The above system of equations is solved by adopt- 
ing the well-established numerical algorithm SIM- 
PLER [9]. The particulars of  the finite-differencing 
scheme and solution procedures have been widely 
publicized, and they need not be recapitulated here. 
As illustrated in Fig. 1, the calculation domain was 
taken to be sufficiently large to simulate the exper- 
imental circumstances. The outer boundary of the 
computation donaain was set at r e=  15.0 and 
z¢ = 15.0. A systematic check was made to ascertain 
the sensitivity of the results to the size of domain. For  
several sets of pertinent external parameters, as rc and 
z¢ were varied between 10.0 and 20.0, the correspond- 
ing changes in the computed velocity and concentra- 
tion fields inside the cup were typically less than 1%. 
The boundary conditions at the outer surface of this 
domain were specified as 

d(ru) 
= v = w = 0  C = 0  a t r = r ¢  (10) 

Or 

~W 
u = v = f f z - z = 0  C = 0  a t z = z c  ( l l a )  

u = v = w = 0  C = 0  a t z = 0  Ro~<r~<re. 

(1 lb) 

As seen in equation (1 lb), the outer boundary con- 
dition at z = 0 simulates the experimental conditions 
of ref. [8] ; in the experiment, the rotating cup was 
placed on a large stationary table. Again, it is pointed 
out that the flow field in the interior of the cup is of 
concern, and these far-outer conditions are shown to 
have a negligibly small influence on the interior flows. 

At the central axis, symmetry requirements are 
enforced 

aw dC 
u = v = ~ - r = 0  ~ - r = 0  a t r = 0 .  (12) 

A staggered and stretched mesh was selected, with 
the grid points clustered near the solid boundaries. 
Correspondingly fewer grid points were employed at 
large radii and heights in the computational domain. 
The actual thickness of the solid cylindrical sidewall 
of the experiment was not stated in ref. [8]. In the 
present study, Ro = 1.01 was used. It is noted that the 
conditions at the outer surface of the non-transferring 
cylindrical wall (r = Ro) have minimal impact on the 
global flow development inside the cup. Therefore, the 
precise value of Ro is of little concern here. Extensive 
sensitivity tests were conducted of the computed 
results to grid spacing and stretching formula. These 
exercises confirmed satisfactory grid-convergence of 
the results. For  most calculations, a grid network of 
60 × 70 in the (r-z) plane was adopted. 

3. RESULTS AND DISCUSSION 

In conformity with the naphthalene experiment of 
ref. [8], Sc = 2.5, and L/R = 1.0 in the computations. 
The range of Re encompassed 30 ~ Re < 3500, 
although the experiment of ref. [8] covered only the 
high-Re regime Re > 800. The objective here is to 
undertake a comprehensive simulation such that emi- 
nent flow characteristics for relatively low Re values 
may also be identified. In the present mass transfer 
simulations, the velocity field and concentration field 
are not coupled. It follows that, for both type A and 
type B, the flow pattern is the same; only the con- 
centration field differs. 

The numerical results are now processed to disclose 
the three-component velocity structure and con- 
centration. Of particular interest is the meridional 
flow (u, w) pattern in the (r-z) axial plane. It is con- 
venient to introduce the meridional stream function 
~k, which is defined such that 
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Fig. 2. Re = 50. The number of contours is 20. (a) Angular 
velocity (v/r) field ; (b) plots of meridional stream function 

; (c) concentration (C) field for type A ; (d) concentration 
(C) field for type B. 
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Fig. 3. Same as in Fig. 2, except for Re = 200. 
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The behavior ofmeridional flow is directly responsible 
for the convective enhancement of transport phenom- 
ena [4-7]. In Figs. 2-5, a series of plots, illustrating ~k 
and C, are given for varying values of Re. First, the 
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Fig. 4. Same as in Fig. 2, except for Re = 800. 
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Fig. 5. Same as in Fig. 2, except for Re = 3200. 

global flow shape is characterized. In general, the 
rotation of the endwall disk of the cup induces axial 
flow toward the base from the surroundings. This is a 
well-documented elementary flow driven by a rotating 
disk. For high Re, the Ekman boundary layer is formed 
on the disk and the axial flow is scaled with Re-V2Rc9 
(dimensional). This is the consequence of the cel- 
ebrated Ekman layer pumping effect [10]. In the pre- 
sent problem, since the base of the cup is finite in size 
and shrouded by the cylindrical wall, the downward 
axial flow has to move radially outward at moderate 
and large radii. At large radii near the cylindrical wall 
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in the interior of the cup, due to the constraint of mass 
continuity, an upward flow is maintained to exit into 
the surroundings. The overall circuit of meridional 
fluid motions may thus be described as a kind of 
washing process. ]),lamely, fresh fluid is drawn from 
the surroundings into the cup interior, and while tra- 
veling over the surfaces of the base and of the cyl- 
indrical wall, the fluid washes off the naphthalene. 
This naphthalene-enriched fluid leaves through the 
cup opening at large radii and enters into the sur- 
roundings [6, 7]. 

Figure 2 exemp1Lifies the results for low Re. In this 
case, the convective activity due to the rotation of the 
cup is comparatively weak, as demonstrated in Fig. 
2a. The general flow structure exhibits the above- 
described qualitatwe pattern. For  low Re, the con- 
centration field is heavily influenced by conduction. In 
Fig. 2c, in the bull: of the cup interior, concentration 
decreases fairly monotonically from the cylindrical 
wall toward the axis. Since the base disk is non-trans- 
ferring, the iso-corLcentration lines encounter the base 
perpendicularly. In Fig. 2d, the base is transferring, 
and concentration decreases almost linearly from the 
solid surfaces toward the central interior region. Con- 
siderable influence of conduction is also discernible in 
Fig. 2d. 

At large Re, it is conspicuous that the boundary- 
layer-like flow character is manifested. The pen- 
etration of the fluid into the cup interior is more effec- 
tive, as seen in Fig. 5b. The boundary layers, both on 
the disk and the cylindrical wall, are distinct and thin. 
Figures 5c and d indicate that, at large Re, naph- 
thalene tends to be confined to thin boundary layers 
adjacent to the solid walls, and in the bulk of the 
interior core of the cup concentration is very weak. A 
gradual shiftover of the flow character, from one with 
a substantial effect of conduction (Fig. 2) to one with 
an overwhelming influence of convection (Fig. 5), is 
depicted in Figs. 2--5. It is interesting to point out the 
qualitative difference in the C-field between type A 
and type B at large Re, as illustrated in Figs. 5c and 
d. When the base is non-transferring, the fluid that 
reaches the vicinity of the bottom of the cylindrical 
wall has very low concentration. Therefore, the con- 
centration boundary layer on the cylindrical wall is 
thin and distinct. In the case of a transferring base, a 
concentration boundary layer is present on the disk. 
As a result, the fluid that moves upward in the bound- 
ary layer on the cylindrical wall has already been 
enriched by the base disk. Consequently, the con- 
centration boundary layer on the cylindrical wall is 
thicker and comparatively less distinct than for the 
case of a non-transferring disk. The flow visualizations 
and the depiction of the C-fields are consistent with 
the afore-stated physical portrayals. 

The numerical results are analyzed further to permit 
a quantitative evaluation of the effect of Re. Figure 6 
illustrates the radial profiles of axial velocity. At the 
mid-height of the cup interior (Fig. 6a for 
z = 0.5L/R), as Re increases, the intensification of w, 

as well as the thinning of the boundary layer at the 
cylindrical wall, is evident. At the opening of the cup 
(Fig. 6b for z = 1.OL/R), a similar trend is visible. 
However, at this height, the magnitude of the upward 
motion is greater and the boundary layer is thinner 
than in the interior regions (note the difference in the 
scales of the ordiJaates of Fig. 6a and 6b). 

Representative vertical profiles of the radial velocity 
at several radial positions are displayed in Fig. 7. 
In the central interior region, curves for r = 0.3 and 
r = 0.5 demonstrate that the cylindrical sidewall 
effects are insignificant. At large radii (see the curve 
for r --- 0.8), considerable sidewall effects are discern- 
ible. At low values of Re, the horizontal velocities in 
the central region are directed radially outward in a 
broad area in the bottom portion of the cavity, and u 
decreases monotonically with height. As Re increases, 
it is evident that the boundary layer-type flow charac- 
ter prevails. As shown in Fig. 7d, at large Re, in the 
bulk of the interior, u is practically zero. Only in the 
thin and distinctive Ekman layer on the base disk is a 
paradigmatic variation of u with height seen. The 
effect of the sidewall on the flow behavior is com- 
paratively small when Re takes a large value. 

The structure of the azimuthal velocity v is now 
examined. Figure 8 depicts vertical profiles of the 
angular velocity (v/r). Note that, due to the rotation 
of the cup, the primary flow of O(1) exists in the 
azimuthal direction. When Re is low (see Fig. 8a), 
the entire flow field is heavily influenced by viscosity 
effects. The velocity variations appear to be fairly 
monotonic in much of the interior. As Re increases, 
the establishment of boundary layer is evident, and 
the effect of the no-slip condition at the cylindrical 
wall is confined to a narrow strip close to the wall. At 
large Re, as seen in Fig. 8d, the bulk of the interior 
core is nearly non-rotating. The rotating fluids are 
concentrated to the Ekman layer on the disk and to 
the cylindrical wall boundary layer. This is in con- 
firmation of the much-studied behavior of bounded 
rotating fluid motions at large Re [10-12]. 

Now, compiling the numerical data, the local Sher- 
wood number Sh, Sh =- ~C/dn, where n is the coor- 
dinate normal to the solid wall surface, has been cal- 
culated in Fig. 9. Figure 9a demonstrates the Sh- 
distribution on the cylindrical wall for type A. For  
this case, the base is non-transferring (Shb -- 0 at the 
base); therefore, the fluid that reaches the bottom 
region of the cylindrical wall is of very low concen- 
tration, since the fluid has not been enriched with 
naphthalene while traveling over the disk. Because of 
a large concentration difference between the fluid and 
the cylindrical wall, mass transfer is vigorous and the 
resulting She is high in the bottom portion of the 
cylindrical wall. As the fluid flows upward along the 
cylinder wall around intermediate heights, the fluid 
becomes enriched in naphthalene. This reduces the 
difference in naphthalene concentration between the 
fluid and the solid wall; consequently, She decreases 
in these regions. Near the opening of the cup, as dis- 
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played in Figs. 2-5, the fluid makes a sharp turn radi- 
ally outward to exit into the surroundings. This gen- 
erates steep velocity gradients, together with the 
thinning of  the concentration boundary layer, in this 
localized zone. Therefore, Sh becomes large locally, 
and the Sh-behavior in Fig. 9a is compatible with this 
physical reasoning. The Sh-distributions for type B, 
for which both the base and the cylindrical wall are 
transferring, are displayed in Fig. 9b and c. As por- 
trayed in the flow visualization pictures of  Figs. 2-5, 
fresh fluid is sucked into the cavity interior over much 
of  small and moderate  radii. This fluid, with almost 

zero concentration, penetrates down to the base disk 
over this radial extent. Consequently, mass transfer 
from the base (C = 1.0) to the fluid is vigorous, which 
turns up in a large and radially-uniform value of  Shb 

over much of  the disk (see Fig. 9b). When the fluid 
reaches large radii close to the corner adjoining the 
bot tom of the cylindrical wall, the fluid has been 
appreciably enriched with naphthalene. This brings 
forth a drop in mass transfer rates, which shows up in 
decreasing Sh at large radii of  the disk as well as in 
the lower zones of  the cylindrical wall. At  mid-heights 
of  the cylindrical wall, because of  intensified con- 
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Fig. 9. Dis~:ributions of the local Sherwood number. (a) Local Sherwood number She at the cylindrical 
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the cylindrical wall, type B. (--) Re = 50 ; ( -  - )  Re = 200 ; ( - . . )  Re = 800 ; ( - - .  - -)  Re = 3200. 

vective flows in the vertical boundary layer at the 
cylindrical wall, She tends to increase slightly with 
height. Near the opening of the cup, due to a sharp 
turn of the flow direction, as the fluid exits into the 
surroundings, the thickness of  concentration bound- 
ary layer decreases. This, together with large velocity 
gradients, gives rise to substantially enhanced transfer 
processes. Large values of Shc in the opening region 
of the cylindrical wall of the cup, as demonstrated in 
Fig. 9c, are indicative of the reasonableness of the 
above physical interpretations. Note that the average 
value of She for type A is generally larger than for 

type B (note the difference in scales for She between 
Fig. 9a and c). This observation is in accord with the 
earlier findings of ref. [8]. 

Finally, the computed data for local Sh are inte- 
grated to produce the mean value Sh, which was pre- 
viously reported by the experiment in ref. [8]. Figure 
10 illustrates cross-comparisons between the mea- 
sured value of Sh and the present numerical results. 
It should be mentioned that the experimental data of 
ref. [8] were secured only for the large-Re regime, i.e. 
Re >~ 800. For  both type A and type B, it is evident 
that two sets of data are in close agreement. The 
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cylindrical wall, type B ; (c) Shb at the base disk, type B ; (d) Sh at the entire wall surface, type B. ( ) 
Experimental results of ref. [8] ; (D) the present numerical data ; ( . . - )  result for rotating disk of ref. [1, 8]. 

present results are in support of  the empirically-fitted 
correlation of  ref. [8] : 

Sh = 0.283Re°"85(L/(2R)) -°465 

which is plotted as the solid line in Fig. 10. It is 
remarked that, as anticipated, the overall mass trans- 
fer coefficient Sh is larger for the case of  a non-trans- 
ferring base. This finding was stated in ref. [8], and 
the present numerical results are consistent with the 
experimental observations. 

4. CONCLUSION 

Fluid inducement into the cup interior intensifies as 
Re increases. At  large Re, the global flow pattern is 
convectively controlled, with distinct and thin bound- 
ary layers present on the solid walls. The con- 
centration boundary layer at the cylindrical wall is 
thicker for the case of  a transferring base (type B) 
than for a non-transferring base (type A). At  small 
and intermediate radii, w is negative and fairly uni- 
form in the radial direction. At  large radii near the 
cylindrical wall, large positive values of  w are seen. 

At  large Re, the angular velocity (v/r) is very small 
in much of  the cup interior. Only in the regions adjac- 
ent to the solid walls, v/r is appreciable. 

Detailed descriptions o f  the local Sherwood number 

are given. On the cylindrical wall, Sh becomes large 
near the opening of  the cup. In the case of  a trans- 
ferring base, Sh is fairly uniform at small and mod-  
erate radii of  the disk, and Sh decreases radially at 
large radii close to the cylindrical wall. 

The computed mean Sherwood number  Sh is in 
close agreement with the available experimental data 
of  ref. [8]. The overall value o f  Sh is larger for a non- 
transferring base than for a transferring base. 
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